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Abstract 

We synthesized a vitetrifolin analog in which the A-ring was replaced with a benzene ring, in 6 steps from commercially available 
2-methyl-1-tetr alone . Similarly to vitetrifolin D, this analog suppressed the phorbol ester–induced epithelial-mesenchymal transition. 
This tetr alone-based structur al simplification str ate gy is expected to be applica b le to studies on not onl y vitetrifolins but also other 
halimane-type diterpenoids. 
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A tetralone-based vitetrifolin analog ( 1 ) was synthesized in 6 steps. It inhibited phorbol ester–induced EMT similarly to vitetrifolin D. 
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Plants in the genus Vitex , such as V. rotundifolia (beach vitex),
V. agnus-castus (c hastetr ee), and V. trifolia (simple-leaf c haste- 
tr ee), hav e tr aditionall y been used as herbal medicines to re- 
lie v e pain and inflammation (Das et al. 2022 ). In particular, the 
fruit of V. agnus-castus has been used to treat gynecological is- 
sues such as menstrual pain, dysmenorrhea, and endometriosis 
(Mayo 1998 ; Farzaei, Niroumand and Heydarpour 2018 ). The vitet- 
rifolins (Figure 1 ) isolated from these plants are halimane-type 
diterpenoids with unique biological activities (Ono, Ito and No- 
hara 2001 ; Wu et al. 2009 ). For example, vitetrifolin D has been 

found to suppress lipopolysaccharide-induced nitric oxide pro- 
duction (Lee et al. 2013 ) and the hedgehog signaling pathway (Arai 
et al. 2013 ), whereas vitetrifolin F has been found to inhibit α- 
glucosidase activity (Djimabi et al. 2022 ). We r ecentl y found that 
vitetrifolin D can inhibit the phorbol ester–induced decrease in E- 
cadherin le v els in HHUA endometrial cells (Hanaki et al. 2023 ). The 
loss of E-cadherin triggers the epithelial-mesenc hymal tr ansition 

(EMT), resulting in cell invasion and metastasis in cancer and en- 
dometriosis (Yang and Yang 2017 ). T hus , vitetrifolin D is thought 
to contribute to the medicinal efficacy of Vitex plants . T he mode 
of action and the in vivo efficacy of vitetrifolin D should be in- 
vestigated, but the limited availability of this compound in plants 
has hampered such studies . Moreo ver, neither the total synthesis 
nor the semisynthesis of vitetrifolins has been ac hie v ed. One r ea- 
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nt -halimane-type diter penoids fr om ent -halimic acid, whic h is
bundant in Halimium viscosum , have been reported (Roncero et al.
018 ). Ho w e v er, the isolation of diterpenoids from plants still re-
uires time and effort, and 8- epi -halim-5(10)-ene deri vati ves have
ot been isolated in a sufficient quantity for use as a starting
aterial. 
To address this supply problems, we attempted to develop a

implified vitetrifolin analog that retained EMT-inhibitory activity.
ecause the chain structure between positions 11 and 15, includ-

ng a terminal alkene and tertiary alcohol groups, is characteris-
ic of vitetrifolins, we predicted that this structure is essential for
heir biological activities. In contrast, the A-ring structure is com-

on among many other diterpenes that lack biological activity,
uggesting that the A-ring may not be necessary for the biolog-
cal activity of vitetrifolins . T he acyl groups at positions 6 and 7
iffer among vitetrifolins, but they are thought to be immediately
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ermeability, r esulting that onl y vitetrifolin D was identified as an
MT inhibitor among vitetrifolins (Hanaki et al. 2023 ). To test these
ypotheses, we synthesized and e v aluated the EMT-inhibitory ac-
ivity of a simplified analog 1 , in which the acetoxy groups were
 emov ed and the A-ring was replaced with a benzene ring to in-
rease the synthetic accessibility. Because the lipophilicity of 1 es-
imated via molinspir ation c heminformatics softwar e (Molinspi-
ation Cheminformatics, 2025 ) was similar to that of vitetrifolin
 (miLogP of 1 , 4.78; and of vitetrifolin D, 5.10), we estimated that

his structural simplification would not dr asticall y affect the cell
ermeability nor number of nonspecific interactions with intra-
ellular substances. 

esults and discussion 

ynthesis of a tetralone-based vitetrifolin analog 

1) 
ompound 1 was synthesized as r acemates fr om commerciall y
v ailable 2-methyl-1-tetr alone (Sc heme 1 ). First, 2-methyl-1-
etr alone was conv erted to r acemic 3 according to a pr e viousl y r e-
orted protocol (Kong et al. 2024 ). The reaction of this ketone with
H 2 I 2 and MeLi generated an e po xide, and subsequent Meinwald-

ype 1,2-H migration afforded aldehyde 2 (Li et al. 2019 ). The qua-
ernary carbon center of 3 was formed by α-methylation with
odomethane in the presence of potassium tert -butoxide. Nuclear

a gnetic r esonace (NMR) spectr a of 3 wer e in good a gr eement
ith the liter atur e data (Kong et al. 2024 ). Ho w e v er , the Horner -
adsworth-Emmons reaction of 3 with dimethyl (2-oxopropyl)

hosphonate did not pr oceed, likel y because of steric hindrance.
ortunatel y, the aldol r eaction with acetone in the pr esence of
odium methoxide (Maugel et al. 2010 ) afforded α,β-unsaturated
etone 4 , albeit in low yield. Although the yield could be increased
y using other bases (Buter et al. 2016 ), we proceeded with the next
tep because a sufficient amount of 4 was obtained. Palladium-
atal yzed hydr ogenation of 4 successfull y afforded 5 . Finall y, the
ddition of a vin yl gr oup to the ketone via the Grignard reaction af-
orded 1 as a 1:1 mixture of diastereomers at position 13, but they
ould not be separated by column c hr omatogr a phy. Pr e viousl y, to-
al synthesis of nakam ur ol A and 3 β-hydr oxymanool, labdane-
ype diterpenoids that have the same chain structure with vitet-
ifolins, has been r eported (Bonjoc h et al. 2000 ; Díaz et al. 2003 ;
ustica et al. 2004 ). They were also synthesized as a mixture of
iastereomers at position 13. The diastereomers of nakamurol A
ould not be separ ated (Bonjoc h et al. 2000 ; Díaz et al. 2003 ), while
hose of 3 β-hydroxymanool were easily separated by flash c hr o-

atogr a phy (Justica et al. 2004 ). Thus, the separability of these di-
stereomers might depend on their overall structure, and some
erivatizations might be necessary to separate the diastereomers
f 1 . Mor eov er, the ster eoc hemistry at position 13 of vitetrifolin
 has not been determined (Ono, Ito and Nohara 2001 ). There-

ore, we in this study subjected 1 to the following biological assays
ithout separation of the diastereomers to immediately evaluate

ts biological activities. 

ytotoxicity of 1 

irst, the cytotoxicity of 1 against HHUA endometrial cells was
 v aluated by means of a WST-based colorimetric assay (Figure 2 ),
nd the IC 50 value was found to be 6.3 μm . Cytotoxicity of 1 could
ot be sim ultaneousl y compar ed to that of vitetrifolin D because
e have isolated only an extremely small amount of vitetrifolin D

Hanaki et al. 2023 ). Ho w e v er, 1 was estimated to be se v er al times
ore cytotoxic than vitetrifolin D, as the viability of HHUA cells at
he presence of 9 μm of vitetrifolin D was 58% in an assay under
he same condition (Hanaki et al. 2023 ). 

MT-inhibitory activity of 1 

e next e v aluated the EMT-inhibitory activity of 1 in HHUA cells.
ur pr e vious study r e v ealed that 12- O -tetr adecanoylphorbol 13-
cetate (TPA), a protein kinase C activator, induced the EMT in
HUA cells (Hanaki et al. 2022 ). Specificall y, TPA decr eased the
ontent of E-cadherin, a major component of the epithelial ad-
erens junction, and increased the content of vimentin, an in-
ermediate filament of mesenchymal cells. At concentrations of
-9 μm , vitetrifolin D suppressed the TPA-induced decrease in E-
adherin content and consequently decreased the vimentin/E-
adherin ratio (Hanaki et al. 2023 ). T hus , we evaluated whether
 inhibited the TPA-induced change in the le v els of these EMT
arker proteins. Since cell viability was markedl y decr eased at

he presence of 10-30 μm of 1 (Figure 2 ), it was difficult to col-
ect enough amount of proteins from cells treated with these
oncentrations of 1 . Adjustment of protein concentration of in-
ividual collected samples was also difficult, because HHUA cells
er e cultur ed on colla gen gels and they wer e collectiv el y l ysed
nd subjected to sodium dodecyl sulfate-polyacrylamide gel elec-
r ophor esis (SDS-PAGE) (Hanaki et al. 2022 ). T hus , we tested the
MT-inhibitory activity of 1 at 1-3 μm . As shown in Figure 3 , the
imentin/E-cadherin ratio tended to decrease dose-dependently
n the presence of 1 . Although 1 exhibited weak cytotoxicity at
 μm (Figure 2 ), we concluded that the observed effect could
ot be attributed mer el y to cytotoxicity but also resulted from
MT suppression, as another diterpenoids decreased cell via-
ility without any effect on the levels of EMT marker proteins

Hanaki et al. 2024 ). To summarize the above results, 1 exhib-
ted EMT-inhibitory activity comparable to or greater than that of
itetrifolin D. 

onclusions 

n this study, we synthesized a simplified vitetrifolin analog ( 1 )
hat inhibited the TPA-induced EMT. Because 1 was pr epar ed as a
 acemic mixtur e of diaster eomers at position 13, the biological ac-
ivities of each isomer remained uncertain. In addition, the aldol
eaction of 3 with acetone was not optimized. Howe v er, despite
hese limitations, 1 was synthesized in only 6 steps with a yield of
t least se v er al tens of milligrams . T he synthetic accessibility of
his compound is expected to be adv anta geous for futur e biolog-
cal studies on vitetrifolins. Future studies will focus on the EMT-
nhibitory mechanism and other potential vitetrifolin-like biolog-
cal activities, such as anti-inflammatory and hedgehog signaling
athway–inhibitory activities (Arai et al. 2013 ; Lee et al. 2013 ) of 1 .
e will also try to synthesize 1 enantio- and diaster eo-selectiv el y

nd identify a stereoisomer with superior EMT-inhibitory activ-
ty. Asymmetric protonation of the enolate can afford both enan-
iomers of 2-methyl-1-tetralone (Oudeyer, Brière and Levacher
014 ). In addition, the tertiary alcohol group at position 13 could
e ster eo-selectiv el y constructed by using asymmetric e po xida-
ion as a k e y ste p (Díaz et al. 2003 ). Ther efor e, all enantiomers
nd diastereomers of 1 would be individually prepared in the
uture. 

Notabl y, the pr epar ed tetr alone-based analog, whose A-ring
as replaced with a benzene ring, retained an EMT-inhibitory ac-

ivity comparable to that of vitetrifolin D. Since the functional
roups on the B-ring of halimane-type diterpenoids are more var-
ed than those on the A-ring, the unique biological properties of
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Figure 1. Structure of vitetrifolins and 1 . 
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Scheme 1. Synthesis of 1 . 
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eac h deriv ativ e can be attributed to the partial structure exclud- 
ing the A-ring. We hav e r ecentl y started to synthesize tetralone- 
based analogs of other halimane-type diterpenoids. Because the 
benzene rings in these compounds can easily be functionalized, it 
is likely that a molecular probe based on these analogs could be 
r eadil y de v eloped. Ther efor e, our ne w analogs ar e expected to fa- 
cilitate future research on the mode of action and in vivo efficacy 
of halimane-type diterpenoids. 

Experimental 
General remark 

NMR spectr a wer e r ecor ded on JNM-ECZ500 (JEOL, Tok y o, J apan),
and chemical shifts are reported in ppm relative to the residual 
solvent ( 1 H NMR: CDCl 3 as δ = 7.26 ppm and acetonitrile-d3 as δ = 
.93 ppm, 13 C NMR: CDCl 3 as δ = 77.0 ppm and acetonitrile-d3 as δ
 1.30 ppm). High-resolution electrospray ionization mass spectra 

HR-ESI-qTOF-MS) wer e r ecorded on a micrO T OF II (Brucker Dal-
onics, Billerica, MA, USA). W akogel C-300 (FUJIFILM W ako Pure
hemical Cor por ation, Osaka, Ja pan) was used for column c hr o-
atogr a phy. All other r ea gents wer e purc hased fr om c hemical

ompanies and used without further purification. 

ynthesis of 3 

ompound 3 was synthesized as reported previously (Kong et al.
024 ). 

1 H NMR (500 MHz, acetonitrile-d3) δ 1.05 (3H, d, J = 6.9 Hz), 1.40
3H, s), 1.85-1.95 (3H, m), 2.86-2.90 (2H, m), 7.02 (1H, m), 7.14-7.19
3H, m), 9.66 (1H, s). 
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Figure 2. Cytotoxicity of 1 against HHUA endometrial cells. HHUA cells 
wer e tr eated with the indicated concentr ations of 1 for 24 h. Ther eafter, 
the cell viability was determined via the WST assa y. T he cell viability 
was expressed as a percentage relative to that of the vehicle group. The 
error bars represent the SE ( n = 4). 
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13 C NMR (125 MHz, acetonitrile-d3) δ 16.8, 22.5, 28.8, 29.7, 38.8,
3.8, 127.3, 127.8, 129.7, 130.6, 137.3, 139.1, 204.1. 

ynthesis of 4 

o a solution of 3 (144 mg, 0.766 mmol) in acetone (0.89 mL) was
dded 5 m NaOMe in MeOH (0.77 mL, 3.85 mmol, 5 equiv) at room
emper atur e. After stirring for 24 h at room temperature, the re-
ction was quenched with H 2 O (2 mL) and saturated aq NH 4 Cl
5 mL). The mixture was extracted with EtOAc (10 mL × 3). The
ombined organic layer was washed with brine, dried over Na 2 SO 4 ,
lter ed, and concentr ated in v acuo . The r esidue w as purified b y
olumn c hr omatogr a phy (silica gel, 1% → 3% EtOAc/hexane) to
fford 4 (30.7 mg, 0.135 mmol, 18%) as a y ello w oil. 

1 H NMR (500 MHz, CDCl 3 ) δ 1.00 (3H, d, J = 6.9 Hz), 1.50 (3H, s),
.62 (1H, m), 1.76 (1H, m), 1.84 (1H, m), 2.22 (3H, s), 2.83-2.87 (2H,
), 5.88 (1H, d, J = 16.6 Hz), 6.93 (1H, d, J = 16.6 Hz), 7.08-7.14 (4H,
). 
13 C NMR (125 MHz, CDCl 3 ) δ 17.2, 25.8, 27.1, 27.5, 29.5, 40.0, 44.2,

26.1, 126.2, 128.7, 129.3, 129.7, 136.5, 140.9, 153.9, 198.9. 
HR-ESI-MS (ESI, positive): C 16 H 20 NaO (M + Na) 251.1406; found

51.1406. 

ynthesis of 5 

o a solution of 4 (26.5 mg, 0.116 mmol) in MeOH (3 mL) was added
0% Pd/C (15.0 mg) at room temperature . T he mixture was vigor-
usl y stirr ed under an H 2 atmospher e at r oom temper atur e for
 h. The mixture was filtered, and the filtrate was concentrated in
acuo to afford 5 (27.0 mg, 0.116 mmol, quant) as a colorless oil. 

1 H NMR (500 MHz, CDCl 3 ) δ 1.02 (3H, d, J = 6.9 Hz), 1.28 (3H, s),
.62-1.84 (4H, m), 1.91 (1H, d d d, J = 14.0, 11.5, 5.5 Hz), 2.06 (3H, s),
.26-2.39 (2H, m), 2.78-2.85 (2H, m), 7.06-7.15 (3H, m), 7.30 (1H, d,
 = 8.1 Hz). 

13 C NMR (125 MHz, CDCl 3 ) δ 16.2, 27.1, 28.0, 28.4, 30.0, 31.0, 38.2,
8.9, 39.9, 125.5, 125.5, 126.8, 129.2, 136.4, 143.5, 209.3. 

HR-ESI-MS (ESI, positive): C 16 H 22 NaO (M + Na) 253.1563; found
53.1566. 

ynthesis of 1 

o a solution of 5 (23.8 mg, 0.103 mmol) in tetr ahydr ofur an
THF) (0.50 mL) was added 1 m vin yl ma gnesium br omide in THF
0.16 mL, 0.160 mmol, 1.6 equiv) at 0 ◦C. The mixture was stirred at
 

◦C for 30 min and at room temperature for 30 min. The reaction
as quenched with saturated aq NH 4 Cl (2 mL). The mixture was
xtracted with EtOAc (2 mL × 4). The combined organic layer was
ashed with brine, dried over Na 2 SO 4 , filtered, and concentrated

n vacuo . The residue was purified by column c hr omatogr a phy (sil-
ca gel, 2.5% EtOAc/hexane) to afford 1 (15.3 mg, 59.3 μmol, 58%,
:1 diaster eomixtur e at C13) as a colorless oil. 

1 H NMR (500 MHz, CDCl 3 ) δ 0.99 (0.5 × 3H, d, J = 6.9 Hz, H 3 -
7), 1.01 (0.5 × 3H, d, J = 6.9 Hz, H 3 -17), 1.22 (0.5 × 3H, s, H 3 -16),
.23 (0.5 × 3H, s, H 3 -16), 1.26 (3H, s, H 3 -18), 1.31-1.58 (3H, m, H-
1a, H-12a, H-12b), 1.63-1.85 (4H, m, H-7a, H-7b, H-8, H-11b), 2.73-
.88 (2H, m, H-6a, H-6b), 5.03 (1H, d, J = 10.8 Hz, H-15a), 5.16 (1H,
, J = 17.8 Hz), 5.81 (0.5 × 1H, dd, J = 17.8, 10.3 Hz, H-14), 5.82

0.5 × 1H, dd, J = 17.2, 10.9 Hz, H-14), 7.03-7.10 (2H, m, H-3, H-4),
.13 (1H, m, H-2), 7.30 (1H, m, H-1). 

13 C NMR (125 MHz, CDCl 3 ) δ 16.1 (0.5 × 1C, C-17), 16.1 (0.5 × 1C,
-17), 27.1 (0.5 × 1C, C-7), 27.2 (0.5 × 1C, C-7), 27.6 (0.5 × 1C, C-
6), 27.8 (0.5 × 1C, C-16), 28.2 (0.5 × 1C, C-6), 28.3 (0.5 × 1C, C-6),
8.9 (0.5 × 1C, C-18), 29.1 (0.5 × 1C, C-18), 31.8 (0.5 × 1C, C-11),
1.9 (0.5 × 1C, C-11), 37.3 (0.5 × 1C, C-12), 37.4 (0.5 × 1C, C-12),
7.8 (0.5 × 1C, C-8), 37.8 (0.5 × 1C, C-8), 39.0 (0.5 × 1C, C-9), 39.1
0.5 × 1C, C-9), 73.4 (0.5 × 1C, C-13), 73.5 (0.5 × 1C, C-13), 111.8 (1C,
-15), 125.2 (1C , C-3), 125.5 (1C , C-2), 126.7 (0.5 × 1C, C-1), 126.7

0.5 × 1C , C-1), 129.1 (1C , C-4), 136.3 (0.5 × 1C, C-5), 136.4 (0.5 × 1C,
-5), 144.4 (0.5 × 1C, C-10), 144.4 (0.5 × 1C, C-10), 144.9 (0.5 × 1C,
-14), 145.0 (0.5 × 1C, C-14). 

HR-ESI-MS (ESI, positive): C 18 H 26 NaO (M + Na) 281.1876; found
81.1878. 

ell culture 

HUA (RCB0658) human endometrial cancer cell line was pro-
ided by RIKEN BRC through National Bio-Resource Project of the
EXT/AMED (Tsukuba, Japan). HHUA cells were cultured in Ham’s
-12 medium with 10% heat-inactivated fetal bovine serum (FBS),
 m m l -glutamine, 100 U/mL penicillin, and 100 μg/mL strepto-
 ycin. The y were maintained at 37 ◦C in a humidified atmosphere

ontaining 5% CO 2 . 

ytotoxicity assay 

HUA cells (1 × 10 4 cells/200 μL ·well) were seeded in a 96-well
late and allo w ed to attach o vernight. T hereafter, solution of 1 in
imethyl sulfoxide (DMSO) or DMSO alone was added. After incu-
ation for 24 h, 20 μL of Cell Counting Kit-8 (FUJIFILM Wako Pure
hemical Cor por ation, Osaka, J apan) w as added to each w ell, and

he plate was incubated at 37 ◦C for an additional 4 h. The ab-
orbance at 450 nm was measured for the control ( C ) well and
he test well ( T ) using a microplate reader (Multiskan FC; Thermo
isher Scientific, Walthman, MA, USA). Cell viability in the pres-
nce of each concentration (1, 3, 10, and 30 μm ) of 1 was calculated
s 100 × ( T / C ) using av er a ge of quadruplicate points . IC 50 value ,
efined as 100 × ( T / C ) = 50, was determined by processing these
alues. 

estern blotting 

o each well of a 48-well plate, 0.25% of atelocollagen solution
KOKEN Co., Ltd, Tok y o, J apan) w as added (150 μL/well) and in-
ubated at 37 ◦C for 3 h to allow gelation. HHUA cells (7.5 × 10 4

ells/450 μL ·well) were seeded in a collagen gel-coated 48-well
late and allo w ed to attach overnight, and then solution of 1 in
MSO or DMSO alone was added. After incubation for 30 min,
PA solution in DMSO or DMSO alone was added and incubated

or 16 h. Cells and collagen gels were washed with PBS, lysed by
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Figure 3. EMT-inhibitory activity of 1 . HHUA cells cultured on collagen type I gels were first treated with the indicated concentrations of 1 and then 
treated with TPA for 16 h. Thereafter, the cells were lysed, an equal amount of each lysate was separated by SDS-PAGE, and the EMT marker proteins 
wer e anal yzed b y w estern blotting. A r epr esentativ e r esult of western blotting and quantification of the band intensities fr om triplicate samples ar e 
shown. The error bars represent the SE ( n = 3). ∗P < .05 (Tuk e y’s test). 
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adding 100 μL of 2X SDS sample buffer, and boiled for 10 min.
Equal amounts of sample were subjected to SDS-PAGE using slab 
gels consisting of a 10% acrylamide separation gel and a 3% 

stacking gel, and transferred to a nitrocellulose membrane. Af- 
ter blocking with PBS-T containing 0.5% skimmed milk for 1 h 

at r oom temper atur e, the blots wer e incubated for 2 h at room 

temper atur e with primary antibodies. After washing with PBS-T,
the blots were incubated for 1 h at room temperature with sec- 
ondary antibodies. After washing, the chemiluminescence signal 
of each band was quantified using Amersham Imager 680 anal- 
ysis software (GE healthcare, Chicago, IL, USA). Anti-E-cadherin 

(24E10), anti-vimentin (D21H3), anti-GAPDH (D16H11), and HRP- 
conjugated anti-rabbit IgG antibodies were obtained from Cell Sig- 
naling Tec hnology (Danv ers, MA, USA). These antibodies were di- 
luted 1:1000 and used for the detection of imm unor eactiv e bands.
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Supplementary material is available at Bioscience, Biotechnology, 
and Biochemistry online. 
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