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Abstract

In traditional theories, bet-hedging in evolutionary biology is defined as a

trade-off between the within-generation arithmetic mean fitness (AMF) of a

genotype and between-generation variance (BGV) in AMF across generations.

The rationale of this definition is that a bet-hedger genotype suppresses the

BGV to increase between-generation geometric mean fitness (GMF; an index

of long-term sustainability), which in turn entails costs in terms of AMF.

However, too strict interpretation of this definition causes confusion among

empirical researchers. For example, in empirical studies comparing a putative

bet-hedger (e.g., producing a generalist phenotype or mixture of various

phenotypes) and non-bet-hedger control (e.g., producing only a specialist

phenotype), reviewers sometimes request that a necessary condition of bet-

hedging is that the bet-hedger candidate shows a smaller arithmetic mean of

AMFs obtained from multiple generations and larger GMF than the control.

However, the cost of bet-hedging is incurred at the potential genotypic level

and thus the decrease of AMF mean is not necessarily observed at the pheno-

typic level (especially if bet-hedger individuals have good conditions). More-

over, contrary to previous arguments, the “fine-grained” environments would

promote bet-hedging because even monomorphic specialist genotypes increase

GMF if their population size is sufficiently large. Computer simulations sup-

port these views. I try to shift the definition of bet-hedging from the trade-off-

based one to the GMF-based one: bet-hedging is any strategy to increase the

between-generational GMF to avoid extinction of its controlling genotype

against unpredictable environmental fluctuation. Under this new light, bet-

hedging will be a universal law of biology.
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1 | INTRODUCTION

1.1 | Adaptations under uncertainty

Organisms live in unpredictably changing environments
(Levins, 1968; Stearns, 1992). Annual plants need to pro-
duce seeds without knowing the growing environment
(e.g., temperature and rainfall) in the next spring
(Cohen, 1966) and birds cannot determine beak size after
looking at their prey (Iwasa, 1990). Butterflies have to lay
eggs on a food plant without knowing whether large her-
bivores such as cows will graze on the entire plant
(Hopper, 1999; Root & Kareiva, 1984). Female animals
have to mate with a male whose (genetic or environmen-
tal) qualities, which sometimes lead to reproductive fail-
ure (no surviving offspring), are unknown (Yasui, 2001;
Yasui & Garcia-Gonzalez, 2016). If all mothers of the
same genotype (strategy) fail to reproduce for these rea-
sons, the genotype goes extinct. In such situations, bet-
hedging strategies to perform risk avoidance or risk
spreading achieve long-term (multigenerational) sustain-
ability (Philippi & Seger, 1989; Slatkin, 1974; Starrfelt &
Kokko, 2012).

1.2 | How to calculate fitness

The index used to evaluate the performance of a
bet-hedging strategy is the geometric mean fitness
(GMF: Table 1 shows all abbreviations, definitions
and equations used in this study) of its controlling
genotype (Gillespie, 1974, 1977; Yasui & Yamamoto,
2021; Yoshimura & Clark, 1991; Yoshimura &
Jansen, 1996). More than one individual of the same
genotype usually exists, and fitness varies among the
individuals so that some average value should be cal-
culated to represent the genotypic fitness (Figure 1).
Here, the number of surviving offspring until
maturation is adopted as fitness. When a mother
(e.g., butterfly) lays five, three, and six eggs on three
different plants and 4, 0, and 3 offspring from
these eggs successfully reach adulthood, respectively,
the individual fitness (IF) of this mother is the sum
of scores (4 + 0 + 3 = 7). If there are three mothers
of the same genotype with IF values of 7, 10 and
0 in the same generation, the within-generation
mean fitness of the genotype is the arithmetic mean
fitness (AMF) over all mothers: AMF¼ 7þ10þ0

3 ¼ 5:67.
If more than one population (e.g., 5, 8, 14, and 3 in
another population) exists, the IF of different pop-
ulations could be pooled AMF¼ 7þ10þ0þ5þ8þ14þ3

7 ¼ 6:71
� �

or evaluated while maintaining population structure

AMF¼ 7þ10þ0
3 þ5þ8þ14þ3

4
2 ¼ 6:585

�
, Figure 1), depending on

the study purpose. When three successive (discrete for
simplicity) generations exist (e.g., each with an
AMF = 6.585, 11.31, or 7.13), the between-generation
mean fitness should be the GMF across generations:

GMF¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:585�11:31�7:133

p ¼ 8:097: Note that, because
the reproductive events of different individuals (7, 10,
and 0 in Figure 1 example) or different clutches (distrib-
uted in different places or environments) produced by
the same mother (4, 0, and 3 in the Figure 1) are mutu-
ally (at least conceptually) independent events, their
average should be the arithmetic mean because of their
additive nature. On the other hand, the number of indi-
viduals in the present generation is the result of repro-
duction in the previous generation(s). This is the reason
why fitness across generations has a multiplicative
nature. Because the present is subordinate to the past,
the average across generations should be a geometric
mean (e.g., a fitness score of 0 in the previous generation
cannot lead to fitness scores other than 0 in the present
generation; in other words, using the AMF across genera-
tions is nonsensical). The characteristic nature of the geo-
metric mean is that it strongly depends on small values
in the dataset (Yasui & Garcia-Gonzalez, 2016). In partic-
ular, if the dataset contains 0, the geometric mean neces-
sarily becomes 0. This implies that if only one generation
resulting in AMF = 0 is included, the genotype or lineage
goes extinct even if the other generations are very suc-

cessful e:g:,GMF¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:585�100�03

p ¼ 0
� �

. Thus, organ-
isms must maintain a GMF>0 to avoid extinction. The
strategies achieving higher GMF by suppressing the inter-
generational fluctuation of AMF are generically called
bet-hedging strategies (Yasui, 1998; Yasui, 2001; Yasui &
Garcia-Gonzalez, 2016). A conservative bet-hedger geno-
type, producing a single phenotype with risk-avoidance
nature (e.g., production of diapausing eggs earlier than
the environmental deterioration), maintains relatively
constant moderate values of fitness over generations

e:g:,GMF¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5�5�5�54

p ¼ 5
� �

. On the other hand, a
diversified bet-hedger genotype, producing multiple phe-
notypes each adapted to different environments
(e.g., production of diapausing and nondiapausing eggs),
(arithmetically) averages good and bad scores within

each mother (e:g:,GMF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ2
2 � 8þ2

2 � 8þ2
2 � 8þ2

2
4
q

¼ 5Þ and

both types of bet-hedgers achieve a higher GMF than a
non-bet-hedger or non-bet-hedging (NBH)

e:g:,GMF¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2�8�24

p ¼ 4
� �

. Bet-hedging adaptation
is widespread among animals and plants, for example,
the partial germination of dormant seeds (Cohen, 1966),
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TABLE 1 List of abbreviations

Abbreviations Term Definition Formulation

IF Individual fitness Lifetime total of fitness score w (typically, the
number of matured offspring) of individual
i, reproducing f times

xi ¼
Pf
e¼1

we

AMF Arithmetic mean
fitness

Average of IF among n individuals of a focal
genotype within a generation

1
n

Pn
i¼1

xi

WGV Within-generation
variance of
fitness

Variance in IF among n individuals of a focal
genotype within a generation

1
n

Pn
i¼1

xi�AMFð Þ2

AMAMF Arithmetic mean of
AMFs

Arithmetic average of AMF across g
generations (conceptual value)

1
g

Pg
j¼1

AMFj

GMF Geometric mean
fitness

Geometric average of AMF across g
generations

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQg
j¼1

AMFj
g

s
¼ exp 1

g

Pg
j¼1

lnAMFj

" #

BGV Between-generation
variance of
fitness

Variance in AMF over g generations 1
g

Pg
j¼1

AMFj�AMAMF
� �2

NBH Non-bet-hedging or
non-bet-hedger

Strategies to increase AMF while increasing
BGV (= extinction risk) Small GMF¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQg
j¼1

AMFvj
g

s

AMFv: highly variable AMF

BH Bet-hedging or bet-
hedger

Strategies achieving higher between-
generation GMF by suppressing the
intergenerational fluctuation of within-
generation AMF

Based on hypothetical (1) positive correlation
between AMF and BGV, (2) negative
correlation between BGV and GMF, and (3)
potential negative correlation between AMF

and GMF 3

BGV supression

AMF decrease

GMF increase2

1

CBH Conservative bet-
hedging or
conservative bet-
hedger

BH is achieved by the individual's suppression
of BGV, maintaining suboptimal but
constant AMF

large GMF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQg
j¼1

AMFcj
g

s

AMFc: suboptimal but constant AMF

DBH Diversified bet-
hedging or
diversified bet-
hedger

A single mother lays a polyphenic clutch, in
which individuals of fit phenotype to the
environment survive and maintain
moderate IF of the mother (offspring of
unfit phenotype die). Averaging of relatively
constant IFs between n mothers results in
moderate AMF and small BGV
(= large GMF)

Large GMF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQg
j¼1

1
nj

Pnj
i¼1

IFcj,i

� �
g

s

IFc: suboptimal but constant IF

MLDBH Multi-lineage
diversified bet-
hedging

A single mother produces offspring of a single
phenotype but different mothers produce
different phenotypes. Arithmetic averaging
of highly-variable IFs between n mothers
results in moderate AMF and small BGV (=
large GMF)

Large GMF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQg
j¼1

1
nj

Pnj
i¼1

IFvj,i

� �
g

s

IFv: highly variable IF

WGDBH Within-generation
diversified bet-
hedging

Individuals live longer over multiple
reproductive seasons or move across
multiple habitats and reproduce f times (i.e.,
overlapping generations). The summation
of f fitness scores offsets the fluctuation of
reproductive success among seasons,
resulting in non-zero IF of individual i,
moderate AMF among n individuals and
small BGV and large GMF across g
generations. Consequently, BH is achieved

GMF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQg
j¼1

1
n

Pn
i¼1

Pf
e¼1

wj,i,e

 !
g

vuut
wj,i,e: fitness score in reproductive event e of
individual i in generation j
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submaximal clutch size (Charnov & Krebs, 2008), egg dis-
persal over multiple patches (Root & Kareiva, 1984),
iteroparity (Philippi & Seger, 1989; Stearns, 1992) and
female multiple mating (Yasui, 1998; Yasui, 2001; Yasui &
Garcia-Gonzalez, 2016; but see Holman, 2016), and, in
fact, one of the fundamental laws of biological evolution.

1.3 | The mean–variance trade-off is
sometimes unobservable

Philippi and Seger (1989) defined bet-hedging as “a trade-
off between the mean (A) and variance of fitness, such
that phenotypes with reduced mean (B) fitness may be at
a selective advantage under certain conditions” ((A) and
(B) are added by the present author). However, this defi-
nition is quite ambiguous. Do mean (A) and mean
(B) indicate the same parameter, and which mean (AMF
or GMF) do they imply? At which level (within-
generational or between-generational) is the variance
considered? As mentioned above, bet-hedging is a con-
cept regarding long-term sustainability, and thus, the
“variance” should be between-generational. Because the
GMF is the objective function of bet-hedging adaptation,

the reduced mean (B) fitness should not be the GMF but
AMF (represented by its intergenerational arithmetic
mean, AMAMF; see Table 1). The mean (A) should be
the intergenerational geometric mean (GMF). Therefore,
the definition is interpreted as the trade-off between
GMF and between-generation variance (BGV) of AMF.
This definition would be that bet-hedging traits (e.g., seed
dormancy; Cohen, 1966) suppressing intergenerational
fitness fluctuations (BGV) and increasing GMF is costly
in terms of AMF (momentary rate of increase). Here,
another trade-off (negative correlation) is also expected
between GMF and AMAMF as a result of a positive cor-
relation between AMAMF and BGV. This GMF-AMAMF
trade-off has been thought as a key feature of bet-hedg-
ing. However, too strict an interpretation of this trade-off
has caused problems. Experimental studies are some-
times requested (by reviewers) that a putative bet-hedger
shows a smaller AMAMF and larger GMF than a non-
bet-hedger control (Childs et al., 2010; Starrfelt &
Kokko, 2012) such as Case 1 in Table 2. However, the
suppression of BGV does not necessarily reduce the AMF
(Case 2 in Table 2). The parameter ranges enabling the
“lose in terms of AMF but win in terms of GMF” rule
seem very narrow.

Reviewing the history of BH definitions (Table 3),
Slatkin (1974) expected a negative correlation (trade-off)
between GMF and BGV only at the comparison between
strategies with the same AMAMF. However, in empirical
studies, the adjusting AMAMF equal is almost impracti-
cal, so that his definition has only conceptual meaning.
The later authors (Philippi & Seger, 1989; Seger &
Brockmann, 1987) did not mention the condition of equal
AMF. Starrfelt and Kokko (2012) and Haaland et al.
(2019), in turn, implicitly admitted that the AMF reduc-
tion is not necessary.

Such a misuse of the trade-off-based definition is cau-
sed by confusing potential costs at the genotypic level
with realized decrease of fitness at the phenotypic level.
For example, an individual with a bet-hedger genotype
with environmentally good conditions would be superior
to that with a non-bet-hedger genotype with bad condi-
tions even if the former incurs an unavoidable cost. In an
empirical test (Yasui & Yamamoto, 2021) of the bet-
hedging polyandry hypothesis (Yasui & Garcia-
Gonzalez, 2016) using the field cricket Gryllus
bimaculatus, females in the polyandrous treatment
(assumed as diversified bet-hedgers, DBHs) showed a
higher AMF in some generations than females in the
monandrous treatment (as NBHs), which resulted in a
higher GMF across generations. Therefore, a negative
correlation between AMF and GMF may occur at the
genotypic level but would not necessarily be observed at
the realized phenotypic level. The overly strict

FIGURE 1 Various concepts of the mean and variance of

fitness. The total number of matured offspring in multiple clutches

laid by a female butterfly is individual fitness (IF). Arithmetic mean

fitness (AMF) is calculated among all females of the same genotype

across populations within a generation. Geometric mean fitness

(GMF) is calculated across AMFs of multiple generations. Between-

generation variance (BGV) of AMF is necessarily (mathematically)

negatively correlated with GMF, but the positive correlation

between BGV and AMF is simply an assumption. See the text

[Color figure can be viewed at wileyonlinelibrary.com]
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interpretation of the trade-off-based definition narrows
the scope of application of bet-hedging. For example, in
an evaluation of the strength of the evidence about bet-
hedging in 103 studies, Simons (2011) found only
12 studies that provided strong evidence based on the
GMF evaluation (Hopper, 2018). Removing this restric-
tion, bet hedging can be more common than previously
thought. In this paper, I try to shift the definition of bet-
hedging from the trade-off based one to the GMF based
one (Table 3).

1.4 | What is the environmental grain
and why is it important?

One important but frequently misunderstood concept
is “environmental grain” (Levins, 1968; Starrfelt &
Kokko, 2012; Yasui & Garcia-Gonzalez, 2016). Here,
I define it as the relative size of a single environmental type
to the spaciotemporal distribution of the focal genotype
(strategy) (see Figure 2). The size of a coarse-grained envi-
ronment (Figure 2a) is larger than the moving range of a
population of each genotype, meaning that all individuals
in the same generation experience the same condition such
as wet or dry summer. The environments unpredictably
change over generations. In such situations, the specialist
genotypes (Ws and Ds in Figure 2a) exhibit higher fitness
fluctuation between generations because all Ws individuals
are favored in a wet-conditioned generation but unfavored
in a dry-conditioned generation (i.e., they are NBH because
of large BGV; Table 4). Consequently, it causes small GMF
(higher extinction risk). A conservative bet-hedging (CBH)
genotype produces a single generalist phenotype to cope
with both environmental types and exhibits moderate but
relatively constant AMF throughout generations, resulting
in small BGV and large GMF (Table 4). In a diversified bet-
hedging (DBH) genotype, a single parent produces offspring

TABLE 2 “Lose in terms of arithmetic mean fitness (AMF) but win in terms of geometric mean fitness (GMF)” is difficult

Case 1 Genotype A Genotype B Case 2 Genotype A Genotype B

AMF in Generation 1 10 > 9 AMF in Generation 1 10 > 9

AMF in Generation 2 15 > 9 AMF in Generation 2 15 > 9

AMF in Generation 3 1 < 7 AMF in Generation 3 1 < 9

AMAMF 8.6667 > 8.3333 AMAMF 8.6667 < 9

BGV 33.5556 > 0.8889 BGV 33.5556 > 0

GMF 5.3133 < 8.2768 GMF 5.3133 < 9

Note: In Case 1, the BGV reduction in Genotype B results in the negative correlation between the AMAMF and GMF. However, the slight increase of AMF in
Generation 3 (Case 2) turns the correlation positive.
Abbreviations: AMAMF, arithmetic mean of arithmetic mean fitness; AMF, arithmetic mean fitness; BGV, between-generation variance; GMF, geometric
mean fitness.

TABLE 3 The definition history of bet-hedging

Literature Definition

Slatkin (1974) An allele which produces the same
mean number of offspring but a
smaller variance will increase in
frequency

Seger and
Brockmann (1987)

Individuals actually suffering a loss of
expected or average fitness in order
to reduce the variance of fitness

Philippi and
Seger (1989)

A trade-off between the mean and
variance of fitness, such that
phenotypes with reduced mean
fitness may be at a selective
advantage under certain conditions

Starrfelt and
Kokko (2012)

A strategy or allele that increases the
probability of its fixation by lowering
the variance of fitness even though
mean (arithmetic) fitness declines

Haaland
et al. (2019)

Bet-hedging has been defined as a
strategy increasing its probability of
fixation in the population through
decreasing the variation in fitness
across generations despite also
decreasing mean fitness. … the
success of a lineage over time is best
estimated by geometric mean fitness
across generations rather than the
arithmetic mean. … a genotype
experiencing less variation in fitness
across generations can spread despite
having a lower expected fitness in any
one generation

Present study Strategies to increase the between-
generational GMF to avoid extinction
of its controlling genotype against
unpredictable environmental
fluctuation. It is potentially costly in
terms of AMF but this cost is
sometimes unobservable
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of multiple specialist phenotypes (W and D) according to
an adaptive proportion; typically, the occurring probability
of each environmental type (Iwasa, 1990). For example, if
wet summer and dry summer come at p: 1 – p proportions,
a mother produces W and D at p: 1 – p in a clutch. At least
some (p or 1 – p) offspring in a clutch survive in either con-
dition and thus, IF of the parent, AMF of the genotype
become moderate and constant values, resulting in small
BGV and large GMF (Table 4). However, when a single

parent produces only one type of offspring but different par-
ents produce different types, such that p mothers produce
W and 1 – p mothers produce D, arithmetic averaging
across multiple parents results in intermediate AMF, small
BGV, and large GMF (Table 4). I name this strategy as
“multi-lineage diversified bet-hedging” (MLDBH). Note that
the compensation of fitness variance occurs at the individ-
ual level in CBH (all parents play it safe) and DBH (all par-
ents do not put all eggs in a single basket) but at the

FIGURE 2 Environmental grain concepts. (a) In a coarse-grained environment, all individuals of the same genotype are equally affected

by environmental conditions (the fitness correlation between individuals is high). Specialist genotypes (wet specialist, Ws or dry specialist,

Ds) produce only one phenotype in offspring. Conservative bet-hedger (CBH) produces a single generalist phenotype. A diversified bet-

hedger (DBH) parent produces multiple phenotypes in an offspring clutch (wet-prone phenotype, W and dry-prone phenotype, (d).

A multilineage diversified bet-hedger (MLDBH) parent produces only one phenotype in offspring but different parents produce different

phenotypes. The between-generation fluctuation in arithmetic mean fitness (AMF) is large in Ws and Ds but small in CBH, DBH, and

MLDBH (if population size is sufficiently large). (b) In a fine-grained environment, the environment varies within dispersal range of a

genotype. The fitness correlation between individuals is low. If population size is sufficiently large, even the specialist genotypes achieve

large geometric mean fitness (GMF). (c) A single iteroparous parent experiences different environment over multiple reproductive seasons.

Individual fitness (IF) is a summation of fitness scores over seasons, absorbing the fitness fluctuation. See the text. Gen., generation;

env., environment [Color figure can be viewed at wileyonlinelibrary.com]
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genotypic level in MLDBH (some parents are successful but
others are not) (Table 4). To achieve the same GMF as
DBH, MLDBH needs the large population size containing
all phenotypes at W: D = p: 1 – p.

In fine-grained environments (Figure 2b), the moving
range of individuals of the same genotype is larger than
the size of a single environmental type. Different individ-
uals experience different environments. Imagine the case
that butterfly eggs on some host plants (proportion p) are
eliminated by grazing of large herbivore animals, but
eggs laid by the same mother on other plants (1 – p) are
intact. This egg-dispersing strategy is a sort of “within-
generation bet-hedging” (Hopper et al., 2003; Starrfelt &
Kokko, 2012). However, if population size is sufficiently
large, even NBH (egg-concentrating on a single host)
strategy can absorb fitness fluctuation at the genotypic
level (Table 4) because the failure of p mothers losing all
eggs is compensated with the success of 1 – p mothers
suffering no predation. This is the reason why bet-
hedging in fine-grained environments has not been
believed to work effectively (Hopper et al., 2003).

However, rather than to say that the within-generation
bet-hedging strategies are no longer effective in large
populations in fine-grained environments, it is more accu-
rate to say that the existence of many NBH individuals is
now acting as bet-hedging. Note that, the logical structure
of the NBH in fine-grained environment is equal to that of
MLDBH regarding the fitness consequence (Table 4),
namely, the fitness compensation occurs between success-
ful and unsuccessful mothers within the same genotype.
Although within-generation variance of fitness (WGV) is
large in these strategies, arithmetic averaging among
many mothers would result in moderate AMF, small BGV
and finally large GMF (Table 4).

Likewise, iteroparity over multiple reproductive sea-
sons (typically years; Figure 2c) creates a temporally fine-
grained environment because a single long-living parent
could reproduce both in favorable and unfavorable

environments. In this case, the moving range (along a
time axis) of individual is also larger than the duration of
a single environmental type. Thus, even the specialist
genotype producing only one phenotype can leave some
offspring to the next generation if at least one of the
reproductive seasons turns to good condition. Iteroparity
or partial hatching of dormant eggs are typical “temporal
bet-hedging” (Hopper, 1999).

From these considerations, I am aware that (spatially
or temporally) fine-grained environments alter a special-
ist genotype (NBH) into some kind of bet-hedger
(Table 4) if their population size is sufficiently large to
cover both favorable and unfavorable environmental
types.

In this study, using computer simulations, I show
(1) that “it loses in terms of the arithmetic mean but wins
in terms of the geometric mean” is not a necessary condi-
tion for bet-hedging in empirical studies and (2) the
effects of fine-grained environments on the sustainability
of specialist genotypes. Finally, I try to reconceptualize
bet-hedging and discuss its ubiquity in evolutionary
biology.

2 | COMPUTER SIMULATIONS

2.1 | Basic settings

Programs were written in Mathematica (Wolfram lan-
guage) for Windows ver. 12.2 (Wolfram Research). The fit-
ness scores (the number of surviving offspring) of three
strategies (genotypes), that is, an NBH, a CBH, and a
DBH, were compared. For simplicity, they reproduced
asexually (offspring employed the same strategy as the par-
ent). NBH and CBH mothers reproduced only once, while
DBH mothers reproduced multiple times. For a single
reproductive event, the fitness score was obtained by draw-
ing a random number following a normal distribution

TABLE 4 The relationships between parameters in each concept

IF WGV AMF BGV GMF

NBH (coarse grained or small population) High or low Smalla Large or small Large Small

NBH (fine grained or large population) High or low Largeb Moderate Small Large

CBH Moderate Smallc Moderate Small Large

DBH Moderate Smalld Moderate Small Large

MLDBH (large population) High or low Largeb Moderate Small Large

aAll IFs are high or low.
bHigh IFs and low IFs co-occur.
cAll IFs are intermediate value.
dHigh fitness scores and low fitness scores are offset within each parent.
Abbreviations: AMF, arithmetic mean fitness; BGV, between-generation variance of fitness; CBH, conservative bet-hedging; DBH, diversified bet-hedging;
GMF, geometric mean fitness; IF, individual fitness; MLDBH, multi-lineage DBH; NBH, non-bet-hedging; WGV, within-generation variance of fitness.
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(mean μ = 15 and SD σ = 10 for NBHs). This can be
interpreted as follows: the NBH genotype that codes for a
trait value with μ = 15 expresses a phenotypic distribution
(Figure 3a) with environmental variance σ2 = 100
according to developmental conditions. Drawn random
numbers (x) less than 0 were reset to x = 0
(i.e., reproductive failure). The NBHs had a higher

genotypic mean and wider phenotypic range of fitness
than the bet-hedgers. Because a single NBH mother
reproduced only once (Figure 3a), failure frequently
occurred (ca. 6.5% of 40,000 reproductive events in this
example). This means that the NBH strategy is the “high-
risk, high-return” strategy. In CBHs, mothers also
reproduced only once but suppressed their fitness vari-
ance under the same environment as NBHs (in the
example of Figure 3, μ = 13.5 and σ = 2, meaning a
phenotypic variance σ2 = 4 around the genotypic trait
value with μ = 13.5). Each DBH mother reproduced
repeatedly and suppressed fitness fluctuations by aver-
aging her own multiple reproductive events (in the
example of Figure 3, μ = 13.9 and σ = 4.14 after averag-
ing 5 samples from the μ = 15 and σ = 10 distribution,
creating a phenotypic variance σ2 = 17.14 around the
genotypic trait value with μ = 13.9). Thus, the reduc-
tion in fitness variance was achieved by the intrinsic
risk-avoidance nature of the CBH strategy, while it
came from the offsetting large within-mother variance
under the DBH strategy (the variance is large within
mothers but small between mothers). The suppression
of fitness variance entails a cost and lowers the IF of
bet-hedgers (Figure 3a). Thus, CBHs and DBHs display
“low-risk, low-return” strategies.

2.2 | Environmental grain

Environmental grain is the degree of synchrony of
surrounding environments among individuals. Coarse-
grained environments are more synchronized than
fine-grained environments (compare Figure 2a and
Figure 2b). In this study, the degree of environmental
grain was simulated as the number (evg = 1–5) of inde-
pendent environmental conditions (e.g., no. patches in
Figure 2) in a population. In the same patch, all individ-
uals were synchronously affected by the same condi-
tions. For example, if evg = 1, the entire population was
equally affected by a coarse-grained environment
(Figure 2a) and the fitness correlation between individ-
uals of the same genotype was high (Starrfelt &
Kokko, 2012). If evg = 5, five independent patches
existed in a population. Each patch experienced differ-
ent microenvironments (Figure 2b). Because IF coin-
cided within each patch but was independent between
patches, I ignored the number of individuals in each
patch for simplicity and focused the number of indepen-
dent patches (i.e., the degree of environmental grain
evg). Intermediate evg (2–4) simulated medium-grained
or mixed environments (coarse- or fine-grained environ-
ments are the extremes of a continuum; Starrfelt &
Kokko, 2012).

FIGURE 3 The frequency distributions of the phenotypic

(realized) fitness expected for the three strategies (genotypes). The

bet-hedgers had a smaller arithmetic mean fitness (μ) and a smaller

standard deviation (σ) than the non-bet-hedgers. The difference in

μ indicates the potential cost of bet-hedging. (a) Distribution of

individual fitness (IF). A total of 40,000 fitness values (a single

reproduction of 4000 mothers across 10 generations for the non-bet-

hedgers (NBHs) and conservative bet-hedgers (CBHs) and an

average of 5 reproductions of 4000 mothers across 10 generations

for the diversified bet-hedgers (DBHs)) were pooled. Original

distribution (phenotypic value) of the NBH with μ = 15 and σ = 10

was altered to μ = 15.3285 and σ = 9.45425 after resetting x < 0 to

x = 0. The settings of the NBH were constant while those of the

CBH and DBH were varied to find the evolutionary conditions of

bet-hedging. In this example where bet-hedgers entail 10% cost (1.5

reduction in μ), the realized values were μ = 13.4947 and

σ = 2.00739 for the CBH and μ = 13.8995 and σ = 4.13996 for the

DBH reproducing five times. Note that resetting x < 0 to x = 0

slightly increased the average in DBH (CBH did not bear negative

values). (b) Distribution of within-generation arithmetic mean

fitness (AMF) obtained by averaging two independently fluctuating

groups of individuals (i.e., the degree of environmental grain

evg = 2). See the text [Color figure can be viewed at

wileyonlinelibrary.com]
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2.3 | Calculation of mean fitness

The AMF among mother groups employing the same
strategy was calculated (Figure 3b). The more indepen-
dent patches there were (= the finer-grained the environ-
ment; the larger the evg), the lower the BGV in AMF
achieved was (the law of large numbers), even for NBHs
(Table 4). Note that Figure 3a shows the distribution of
IF, whereas Figure 3b shows that of the AMF for each
genotype in a generation when evg = 2. In CBH and
DBH, reduction of fitness variance has already been
achieved in a single environment (Figure 3a) but occurs
by the averaging across two environments in NBH
(Figure 3b). Averaging between only two independent
patches greatly reduces the reproductive failure of NBH.

Next, I conducted pairwise comparisons between NBHs
and CBHs or DBHs (Figure 4). The same number
(evg = 1–5, equivalent to the degree of environmental
grain = the number of patches) of IF values (x1, x2, …, xevg)
was randomly chosen from the IF distributions of NBH
and CBH or DBH in Figure 3a, and the arithmetic mean
was calculated for each genotype (AMF¼ x1þx2þ���þxevg

evg ;
Figure 3b). This procedure was repeated g times (for
g generations) for each strategy. For simplicity, the gener-
ations were discrete, and the arithmetic mean (AMAMF)
and geometric mean (GMF) of AMFs across g generations
were calculated. Finally, the pairwise datasets of
AMAMF differences (CBH or DBH – NBH) and GMF dif-
ferences (CBH or DBH – NBH) were plotted (Figure 4)
(2000 iterations of g = 10 generations). For various

parameter ranges, that is, the number of independent
patches in a population (environmental grain evg = 1–5),
standard deviation of CBHs (σ = 2–10, compared to
σ = 10 of NBHs), number of reproductive events per
DBH individual (1–10) and cost of bet-hedging (0%–20%
reduction in mean genotypic fitness compared to that of
NBHs) were examined.

2.4 | Specialists (risk-prone strategies)
in fine-grained environment

In Section 1.4, I hypothesized that in fine-grained environ-
ments (Figure 2b), in which the fitness correlation among
individuals of the same genotype is low because each indi-
vidual experience different environment, specialist (high-
risk high-return) strategies could avoid extinction via the
same mechanism as MLDBH. To test this idea, the proba-
bility of extinction (occurrence of GMF = 0) of NBH was
evaluated under the conditions with various environmen-
tal grain (evg = 1–10) and fitness variance (σ = 2–30; from
risk-averse to risk-prone) but constant IF (μ = 15).

3 | RESULTS

3.1 | Evolution of bet-hedging

Figure 4 shows the relationship between the AMAMF
difference and GMF difference (= BH – NBH). In certain

FIGURE 4 The relationship between the difference (diversified bet-hedging [DBH] minus non-bet-hedging [NBH] in this example) in

arithmetic mean of arithmetic mean fitness (AMAMFs) across generations (x-axis) and that in the geometric mean fitness (GMF) across

generations (y-axis). The positive values indicate that the bet-hedgers (BHs) beat the NBHs in each pairwise competition. Conditions in this

example: iterations in the simulation (2000); no. of generations (10); no. of independent groups of the same genotype (synchronously

fluctuating) in each generation (= degree of environmental grain) (2); no. of reproductive events per individual (5); original mean fitness of

NBHs (Figure 2a) (15); and cost of bet-hedging (10% reduction in AMF). NBH extinction occurred in 90 out of 2000 iterations (red dots). No

extinction occurred in DBHs [Color figure can be viewed at wileyonlinelibrary.com]
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parameter sets, the GMF of bet-hedgers was greater than
that of NBHs (the dots in Quadrants I and II in Figure 4).
In particular, NBHs often went extinct because they drew
0 within 10 generations. On the other hand, CBHs and
DBHs very rarely went extinct. This greatly increased the
GMF differences (in the example of Figure 4, ca. 4.5% of
dots concentrate around y = 13.5).

For the reason mentioned later (see Section 4.1),
I considered the evolutionary condition of bet-hedging to
be that the CBHs or DBHs win with a probability of 0.5 or
more in terms of GMF (i.e., 50% or more dots in

Quadrants I + II in Figure 4). I explored the parameter
sets enabling this condition (Figures 5 and 6). In general,
bet-hedging is evolvable if the fitness variance of CBHs is
small or DBH mothers reproduce frequently and the
potential fitness cost of bet-hedging is small (Figure 5).
Repeated reproduction (Figure 5b) seemed more effective
than variance reduction (Figure 5a) in increasing GMF.
However, a bet-hedger is advantaged only in coarse-
grained environments (small evg). This is because when
only one or two independent patch(es) or mother group(s)
of the same genotype existed in the population, the

FIGURE 5 The parameter ranges enabling bet-hedging evolution (a, conservative bet-hedging [CBH]; b, diversified bet-hedging [DBH]).

The area of colored contours indicates that bet-hedgers (BHs) can increase in the population by outcompeting non-bet-hedgers (NBHs). The

white plane means that NBHs win. Conditions: iterations in the simulation (2000); no. of generations (10); original mean fitness of the NBH

genotype (Figure 2a) (15). Environmental grain (evg) is constant throughout generations. See the text [Color figure can be viewed at

wileyonlinelibrary.com]
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extinction (GMF = 0) of NBHs more frequently occurred
than that of CBHs and DBHs, but if evg ≥ 3, extinction no
longer occurred for all strategies (Figure 6). NBHs win
because BHs entail deterministic cost. However, even in a
fine-grained environment (evg = 5), the BH strategies can
evolve in a small (≤3%) cost range (Figure 5).

3.2 | Environmental grain and non-bet-
hedging (specialist)

In the coarse-grained environments (evg = 1–2), the non-
bet-hedging specialist genotype frequently went extinct if
it took “risk-prone” strategies (higher fitness variances)
(upper left area in Figure 6c). However, in the fine-

grained environments (evg > 4), meaning several inde-
pendent mother groups of the same genotype exist within
the dispersal range, risk-prone strategies no longer went
extinct (equally or more competitive compared to BHs).

4 | DISCUSSION

4.1 | The new meaning of the old
definition

If the traditional definition (Philippi & Seger, 1989;
Seger & Brockmann, 1987; Slatkin, 1974) treats a strategy
as bet-hedging only when it “loses in terms of the arith-
metic mean but wins in terms of the geometric mean” in

FIGURE 6 The extinction

probability of conservative bet-

hedgers (CBHs) (a), diversified

bet-hedgers (DBHs) (b) and

non-bet-hedgers (NBHs)

(c) under various parameter

sets. The purple planes indicate

no extinction. In fine-grained

environments (evg ≥ 3), no

extinction occurred in CBHs

and DBHs. Conditions:

iterations in the simulation

(2000); no. of generations (10);

and original mean fitness of the

NBH genotype (Figure 2a) (15).

See the text [Color figure can be

viewed at

wileyonlinelibrary.com]
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empirical studies, only the dots in Quadrant II in
Figure 4 satisfy this requirement. If these dots are more
frequent than 50% of the total 2000 dots (a winning per-
centage > 50%), this “bet-hedging in the strict sense” can
increase (i.e., evolve) in a population. However, I could
not find such a condition within the limited number of
generations (g = 10 as a realistic range in experimental
studies). Whenever many dots existed in Quadrant II,
Quadrant I contained a comparable number of dots
(Figure 4). Therefore, bet-hedging cannot evolve under
this strict definition. Because the simulations did not
incorporate any arbitrary assumptions other than a
genotype-intrinsic trait value and its variance, this con-
clusion is very general and robust.

Instead, it is appropriate to relax the requirement and
define it as winning in terms of the between-generation
GMF (irrespective of the within-generation AMF; that is,
50% or more dots in Quadrants I + II of Figure 4). The
simulations under this standard (Figures 5 and 6) show
that bet-hedging is evolvable. Note that because bet-
hedgers already paid potential costs at the genotypic level
(the mean difference in Figure 3), the definition of an
AMAMF-GMF trade-off is met even if it was not observed
at the realized phenotypic level (Figure 4). This is analo-
gous to condition-dependent handicap traits in sexual
selection such as the peacock's tails (Johnstone, 1995;
Zahavi, 1975). The high cost of such conspicuous orna-
ments is payable only for highly genetically conditioned
males, and thus, ornaments can be a reliable indicator of
male genetic quality (Andersson 1994). Likewise, the cost
of bet-hedging is not a problem for good-condition indi-
viduals, and they exhibit high performance in terms of
both the AMF and GMF (as Case 2 in Table 2). Therefore,
the old definition itself is reasonable but it has been mis-
interpreted and misused, in turn underestimating the role
of bet-hedging in biological evolution.

4.2 | Why do bet-hedgers win?

The selective advantage of bet-hedgers mainly comes
from the frequent extinction of NBHs in coarse-grained
environments (Figure 6). When only one group of
mothers of the same genotype whose fitness scores are
completely synchronized (= individuals in the same
microenvironment) exists in the population, NBHs
unavoidably experience 0 fitness at some point over gen-
erations, and the GMF becomes 0 (i.e., extinction occurs).
Although bet-hedgers incur the cost, meaning that their
fitness distribution (Figure 2) shifts toward 0, they can
maintain a positive GMF. CBHs avoid extinction by
suppressing their fitness variance itself. Because these
bet-hedgers maintain a narrower fitness distribution

(Figure 2) at all levels (within-generation and between-
generation; Table 4), they draw 0 very rarely. DBHs also
avoid extinction by (arithmetically) averaging the fitness
fluctuation across multiple reproductive events within-
individuals and across multiple individuals within gener-
ations (i.e., risk spreading). In each reproductive event of
DBH, the potential fitness distribution is not different
from that of NBHs, but the averaging recreates the
narrower realized distribution (Figure 2) for DBHs. Thus,
although DBHs draw 0 with the same probability as
NBHs, they can compensate for it with other positive
values e:g:, , 10þ0

2 ¼ 5
� �

.

4.3 | Fine-grained environments alter
non-bet-hedgers into bet-hedgers

As predicted in Section 1.4, fine-grained environments
favor NBH producing a single specialist phenotype.
There, NBH is equally competitive to CBH or DBH.
When evg ≥ 5, five or more individuals of the same NBH
genotype distribute over multiple patches with different
conditions or experience different fitness-related events.
Consequently, the probability that all NBH individuals
unluckily fail reproduction is nearly zero even if they
took a risk-prone strategy (large fitness variance such as
σ = 30) (Figure 6c). Recently, several authors suggested
that the risk-prone strategy could evolve in fine-grained
environments (Haaland et al., 2019) or if extinction prob-
ability is very low and the fitness return is very high
(Ito, 2019; Ito et al., 2013). The present results support
this view. Thus, fine-grained environments alter NBHs
into BHs. In other words, the adaptations to alter the
environmental grain from coarse to fine, by distributing
offspring at spaciotemporally wider range than the extent
of environmental change are equivalent to bet-hedging.

4.4 | Rethinking bet-hedging: How to
cope with unavoidable reproductive
failures

Organisms face unpredictable environmental changes
and every kind of uncertainty affecting their reproductive
success (Hopper, 1999; Philippi & Seger, 1989;
Slatkin, 1974). Bet-hedging can control uncertainty. One
simple equation explains the essence of bet-hedging:

w1þw2þ�� �þwf

f
≥ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w1w2…wf
f
p

, ð1Þ

where w1,w2,…,wf are the fitness scores of f rep-
roductive events of the same genotype (strategy).
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Equation (1) shows the relationship between the arith-
metic mean (left side) and geometric mean (right side),
indicating that the arithmetic mean is larger than or
equal to the geometric mean of the same sample set.
It also indicates that when all samples have the same
value (w1 ¼w2 ¼ �� � ¼wf ), the geometric mean coincides
with the arithmetic mean, and they are simultaneously
maximized.

However, variability in the fitness score itself is unavoid-
able in real cases, and thus, the multigenerational mainte-
nance of the same score (even a moderate value) is
impossible. Hence, maximizing GMF through CBH strategies
is difficult in practical cases. If 0 fitness in a single reproduc-
tive event (within w1,w2, ���,wf ) occurs, the right side of
Equation (1) becomes 0, but the left side does not. There-
fore, a conversion from the situation where the mean fit-
ness should be calculated as the geometric mean to the
situation where the mean fitness can be calculated as the
arithmetic mean, namely, the transfer of fitness variation
from multigenerational events to within-generation
events, is an effective strategy. This transfer should be
called within-generation (but across multiple reproduc-
tive seasons or across multiple habitats) diversified bet-
hedging (WGDBH in Table 1); each generation consists
of n individuals performing f reproductive events and

generation is repeated for g times. The fitness scores
including 0 are (arithmetically) averaged within genera-
tions and the resulting GMF across g generations is
almost always some positive value (unless all wj,i,e values
are 0 in the same generation; this is possible but unlikely,
because if all reproductions fail, no strategy can cope
with it!), meaning long-term sustainability.

In WGDBH (Table 1, Figure 7b), we can see that the
single wj,i,e = 0 affects the entire GMF very little. Thus,
the DBH strategy is generally more powerful than the
CBH strategy because of the tolerance of 0 (Figure 5).
The WGDBH provides a new conceptualization of bet-
hedging in the context of biology. Specifically, bet-
hedging is not a strategy for avoiding any reproductive
failure (0 fitness) but rather a strategy for coping with
unavoidable failures.

Organisms achieve WGDBH by making their environ-
ments fine-grained. They reproduce repeatedly over multi-
ple seasons to make temporally fine-grained environments
or move wider across habitats with different conditions to
make spatially fine-grained environments (Figure 7). For
these reasons, iteroparity (Hopper, 1999; Stearns, 1992)
and dispersal or migration (metapopulation structure:
Hanski, 1999; Levin, 1974; Marsh & Trenham, 2001) have
evolved in many species. Both activities are costly in terms

FIGURE 7 Within-generation diversified bet-hedging. Reproductive success of four generations of a single lineage is shown. (a) In

semelparity and nondispersal, a single reproductive failure (0 fitness) leads the lineage to extinction (geometric mean fitness [GMF] = 0).

(b) In iteroparity and dispersal across up to three habitats, zero values affect the entire GMF (sustainability) very little because of the risk-

spreading over years or habitats (but within generations). The cost of bet-hedging appears as a reduction in the arithmetic mean of

arithmetic mean fitness (AMAMF) in iteroparity and dispersal [Color figure can be viewed at wileyonlinelibrary.com]
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of AMF (momentary rate of increase) but achieve high
GMF. Thus, WGDBH also meets the trade-off definition of
bet-hedging (Table 1). Large animals (e.g., mammals and
birds) and perennial trees employ iteroparity, suggesting
the significance of a large size and a long life. Short-lived
organisms such as annual plants and Daphnia produce
dormant seeds (Cohen, 1966) and resting eggs (Alekseev &
Lampert, 2001), respectively. Although parents are annual,
the offspring reproduce over multiple seasons (thus, the
situation is temporally fine-grained). Almost all organisms
disperse offspring over multiple places with different
environments or different luck. They change environment
into spatially fine-grained. Some offspring enter good habi-
tats (e.g., suitable climate) or meet good luck (e.g., escap-
ing from predation). According to the classification of
Hopper (1999), the former and latter correspond to
“metapopulation bet-hedging” and “within-generation bet-
hedging,” respectively. Both strategies are based on the
same logic but the NBH to which these strategies are
compared (as controls) are different with regard to envi-
ronmental grain: the NBH compared to metapopulation
bet-hedging is confined within a single environmental type
but the NBH compared to within-generation bet-hedging
moves across environments (in other words, the latter is
equivalent to MLDBH). Such a complicated classification
of bet-hedging has now been disentangled.

Most importantly, the existence of multiple individuals
with the same strategy in the population offsets the fitness
fluctuation among individuals. Indeed, reproduction is an
activity for making spare individuals of the same genotype.
Because spare individuals belong to different circumstances
(fine-grained environments), the genotype can avoid being
ruined altogether. Therefore, reproduction itself is bet-
hedging (Yasui & Yamamoto, 2021). Against what?—Non-
reproduction. Does it cost?—Yes. Reproducing individuals
reduce their own survival rate compared to that of non-
reproducers but increase their long-term persistence, where
the cost of bet-hedging is integrated into the general cost of
reproduction (Stearns, 1992).

5 | CONCLUSIONS

This study dissects the complicated logic and structure of bet-
hedging. The mean–variance trade-off is simply an assump-
tion that should be tested (Yasui & Yamamoto, 2021). The
negative correlation (trade-off) between within-generation
AMF and between-generation GMF is not a necessary condi-
tion for confirming bet-hedging in empirical studies. I
reorganized the definition of bet-hedging and expanded its
meaning. If a mother successfully distributes offspring
over the range covering all possible spaciotemporal environ-
mental conditions (making fine-grained environments),

reproductions at multiple places and in multiple seasons
become single-generational events (Figure 7b). Because
within-generation fitness is calculated as arithmetic mean
(AMF), it can offset fitness fluctuation (occurrence of 0).
Organisms are entities that reproduce, and reproduction itself
is bet-hedging. Therefore, bet-hedging is a ubiquitous, univer-
sal law of biology.
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